Estuaries are among the most densely populated and heavily utilised regions in the world, where crucial functions – e.g., freshwater availability and water safety – strongly relate to the natural dynamics of the system. When developing nature-based solutions to safeguard these essential functions, a thorough understanding of estuarine dynamics is required. This study describes an elaborate sensitivity analysis on the salt intrusion length using an idealised estuary, which is parametrically designed using key estuary-scale parameters – e.g., river discharge and tidal flats – to cover a wide range of estuary classes. We were able to systematically investigate such a wide range of estuary classes due to the combination of (1) state-of-the-art hydrodynamic modelling software, (2) high performance computing, and (3) reduction and analysis techniques using machine learning. The results show that the extent of the estuarine salt intrusion length is largely determined by four estuarine features: (1) river discharge; (2) cross-sectional area (especially water depth); (3) tidal damping/amplification; and (4) tidal asymmetry. In general, the salt intrusion length shows clear correlations with (a combination of) estuary-scale parameters, which all put an upper limit on the salt intrusion length. These relations provide crucial insights for successful development of nature-based solutions to mitigate salt intrusion in estuarine environments.
Alle informatie in het Integrated Marine Information System (IMIS) valt onder het VLIZ Privacy beleid